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Abstract: In linear mixed models, the Akaike information criterion (AIC) is of-
ten used to decide on the inclusion of a random effect. An important special case
is the choice between linear and nonparametric regression models estimated us-
ing mixed model penalized splines. We investigate the behavior of two commonly
used versions of the AIC, derived either from the implied marginal model or the
conditional model formulation. We find that the marginal AIC is not asymp-
totically unbiased for twice the expected relative Kullback-Leibler distance, and
favors smaller models without random effects. For the conditional AIC, it is com-
putationally costly for large sample sizes to correct for estimation uncertainty.
However, ignoring it, as is common practice, induces a bias that yields the follow-
ing behavior: Whenever the random effects variance estimate is positive (even if
small), the more complex model is preferred. We illustrate our results in a simu-
lation study, and investigate their impact in modeling childhood malnutrition in
Zambia.
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1 Introduction

Linear mixed models are increasingly used to model complex data struc-
tures. Using penalized splines, they can combine model components such as
non-linear or spatial effects, interaction surfaces or varying coefficients with
cluster-specific random effects. The growing flexibility of such regression
models then makes the question of model selection increasingly important.
The Akaike information criterion (Akaike, 1973) is often used to decide on
the inclusion of random effects in linear mixed models. A common special
case when using penalized splines is the decision between a linear and a
nonparametric function for a covariate effect. An AIC based on the implied
marginal likelihood is typically used (mAIC). Vaida & Blanchard (2005)
proposed an AIC derived from the conditional model formulation (cAIC).
They argue that the cAIC is more appropriate when focus is on the random
effects, such as in the case of penalized splines, as the random effects are
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then additional parameters that are estimated subject to a distributional
constraint rather than a tool for modeling the correlation structure. How-
ever, both AIC versions are commonly used. We investigate the behavior
of both for the selection of random effects in the linear mixed model

y = Xβ + Zb+ ε, (1)

where X and Z are known design matrices, β is a fixed parameter vector,
b and ε are assumed to be independent, b ∼ N(0,D) and ε ∼ N(0,σ2In).

2 The marginal AIC

The AIC can be generally defined as

AIC = −2 log f(y|ψ̂(y)) + 2Ey [log f(y|ψ̂(y))− log f(y|ψK)] (2)

+2Ey [Ez [log f(z|ψK)− log f(z|ψ̂(y))]],

where f(y|ψ̂(y)) is the maximized likelihood, and ψ are k unknown param-
eters with values ψK minimizing the Kullback-Leibler distance (Kullback
& Leibler, 1951) between the true underlying joint density g(·) and the
family of approximating candidate models f(·|ψ),ψ ∈ Ψ,

K(fψ, g) =
∫
{log(g(z))− log(fψ(z))}g(z)dz = Ez[log(g(z))− log(fψ(z))].

K(fψ, g) can be viewed as a measure of distance between g(·) and f(·|ψ),
ψ ∈ Ψ. As the AIC is unbiased for twice the expected relative Kullback-
Leibler distance, minimizing (2) can be seen as minimizing the average
distance of an approximating model to the underlying truth.
In standard cases, certain regularity conditions are fulfilled, including that
observations are independent and identically distributed, and the parame-
ter space (up to a change of coordinates) is Rk. Then, the last two terms
in (2) reduce to 2k asymptotically. This is the AIC commonly used.
The marginal AIC (mAIC) in the linear mixed model uses the likelihood of
the implied marginal model y ∼ N(Xβ,V ) with V = In + ZDZ′. The
number of estimable parameters then is p+ q, with β = (β1, . . . , βp) and q
the number of unknown parameters θ in V . Thus, the mAIC is defined as

mAIC = −2 log(f(y|β̂, θ̂)) + 2(p+ q).

Now, we can show (Greven & Kneib, 2008) that due to the marginal corre-
lation structure in y in (1) and the constraints on θ (variances have to be
non-negative, and more generally, D has to be positive semi-definite), the
last two terms in (2) are smaller than 2(p+ q) as well as not independent
of the true values in θ. Consequently, the mAIC is positively biased, and
favors smaller models without random effects.
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3 The conditional AIC

Vaida & Blanchard (2005) define the conditional AIC (cAIC) as

cAIC = −2 log(f(y|β̂, b̂, θ̂)) + 2(ρ+ 1),

where f(y|β̂, b̂, θ̂) is the maximized conditional likelihood (conditioning
on b as well as on β and θ), b̂ is the best linear unbiased predictor of b,
(β̂, θ̂) are the maximum likelihood (ML) or restricted maximum likelihood
(REML) estimates of (β, θ), and

ρ = trace
((

X ′X X ′Z
Z ′X Z ′Z +D∗−1

)−1(
X ′X X ′Z
Z ′X Z ′Z

))
.

This definition of ρ corresponds to the trace of the hat matrix, and is con-
nected to the effective degrees of freedom definition known from smoothing.
The authors assume D∗ = σ−2D to be known, but suggest using ρ̂ with
estimatedD∗ otherwise, arguing that the difference is negligible for large n.
We will call this the conventional or simplified cAIC in the following. Liang
et al. (2008) propose a corrected cAIC, accounting for estimation of D∗.
For known σ2, they replace ρ by Φ0 = trace (∂ŷ/∂y), where ŷ = Xβ̂+Xb̂.
For unknown σ2, the effective degrees of freedom Φ1 involve even second
derivatives,

Φ1 =
σ̃2

σ̂2
trace

(
∂ŷ

∂y

)
+ σ̃2(ŷ − y)′

∂σ̂−2

∂y
+

1
2
σ̃4trace

(
∂2σ̂−2

∂y∂y′

)
,

where σ̃2 is an estimate for the true error variance. As these derivatives
are not available in closed form, numerical approximations using n respec-
tively 2n additional model fits have to be used. This can be prohibitive in
large samples. In our application (n = 1600, 64 models to compare), we
estimated the necessary computation time to be about 110 days. As the au-
thors in their simulations find only small differences between conventional
and corrected cAIC, we investigate whether the often used simplified cAIC
is a computationally feasible alternative - especially when n is large. In
this case, the computational cost of the corrected cAIC can be too high,
and consistent estimators should yield precise variance estimates. Unlike
Liang et al. (2008a), who concentrated on estimating the effective degrees
of freedom, we focus on the performance for differentiating between zero
and non-zero random effects variances.
Surprisingly, we can show (Greven & Kneib, 2008) that ignoring estimation
uncertainty inD∗ for the simplified cAIC results in the following interesting
behavior (for simplicity, we focus on the case of one unknown variance
component, i.e. D = τ2Σ with known Σ): When τ̂2 = 0, the cAICs of the
models including and excluding b agree, i.e. there is a tie. When τ̂2 > 0,
the cAIC prefers the larger model including b, regardless of the size of
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τ̂2. The simplified cAIC thus is not a useful decision rule, as it does not
give guidance on when an estimated variance is large enough to warrant
inclusion of the random effect in the model, or small enough to justify
exclusion of the random effect from the model.
The principal difficulty of the simplified cAIC is that the degrees of free-
dom in the cAIC are estimated from the same data as the model param-
eters. This leads to a bias that results in a preference for larger models.
This behavior has its analogy in the AIC itself. Use of the maximized log-
likelihood for model choice would always result in the largest model being
chosen. The underlying over-optimism in the model fit is due to the param-
eter estimates being obtained from the same data which is the argument of
the log-likelihood. The AIC corrects for this bias and is a truly predictive
quantity. A similar mechanism is at play here. While the correct bias cor-
rection term in our case cannot be derived analytically, Liang et al. (2008a)
circumvent the problem using numerical derivatives. In a sense, their bias
correction term is measuring the sensitivity of results to new data, simi-
lar in spirit to other predictive criteria such as generalized cross validation
(GCV). Unfortunately, this comes at the price of computational complexity
(and some numerical instability) that is comparable to leave-one-out cross
validation. More work is clearly needed here.

4 Simulations

First, we compare a linear model yi = β0+β1xi+εi with the nonparametric
regression model yi = m(xi) + εi, modeled using penalized splines in the
mixed model framework. Thus, the comparison corresponds to selecting a
random effect modeling deviations ofm(·) from linearity. The true functions
are chosen as (see Figure 1)

m1(x) = 1 + x+ 2d(0.3− x)2,
m2(x) = 1 + x+ d(log(0.1 + 5x)− x),
m3(x) = 1 + x+ 0.3d(cos(0.5π + 2πx)− 2x)

with varying non-linearity parameter d = 0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, where
d = 0 corresponds to linearity. The sample size is taken as n = 30, 50, 100,
200. The error variance is set to σ2 = 1, and x is chosen equidistantly from
the interval [0, 1].
Second, we compare a random intercept and a common intercept model,
varying random intercept variance, number and size of clusters. In case of
a tie between models, we intrinsically decide on the smaller model.
The simplified cAIC gives a much larger proportion of decisions for the
larger model than the mAIC, with the corrected cAIC in-between (Figure
2). While the AIC for nested models in standard settings corresponds to a
likelihood ratio test with asymptotic level α = 0.157, α is much smaller for
the mAIC (as low as 0.01 in our simulations), much larger for the simplified
cAIC (up to 0.49), and more similar for the corrected cAIC (0.07 to 0.40).
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FIGURE 1. Functions m1(·) and m2(·) for different values of the non-linearity
parameter d.
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As predicted from our theoretical results, the simplified cAIC chooses the
larger model when τ̂2 > 0, and gives a tie when τ̂2 = 0. Thus, α here simply
corresponds to the proportion of non-zero variance estimates given a true
zero variance, which for penalized splines is about 20% for ML estimation,
and more than 35% for REML estimation, and which approaches 50% for
the random intercept model.
In contrast, the mAIC does not show this behavior, and in particular never
yields equality under the linear and the non-linear model due to the ad-
ditional parameter count for the variance parameter. The corrected cAIC
with Φ0 + 1 still results in a large number of ties, which disappear when
using Φ1.
The corrected cAIC often favors the more complex model even when τ̂2 = 0
due to numerical problems. Especially for Φ1 using second derivatives, the
numerical approximation fails in some cases, resulting in spurious estimated
degrees of freedom. Overall, Φ0 +1 approximates Φ1 rather well (see Figure
2), but is numerically much more stable.

5 Childhood malnutrition in Zambia

We investigate implications of our theoretical findings for model choice in
practice. We are interested in modelling the Z-score, measuring chronic un-
dernutrition (stunting) as insufficient height for age, for 1600 children from
the 1992 Zambia Demographic and Health Survey. The available predic-
tors were 1) categorical/binary: child’s gender, mother’s employment status
and education 2) spatial: residential district and 3) continuous: duration
of breastfeeding, child’s age, mother’s age, height and body mass index.
Due to computational cost of the corrected cAIC in our large data set, we
focused only on the mAIC and the simplified cAIC for selecting a random
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FIGURE 2. Selection frequencies of the larger, non-linear model in our simula-
tions for function m1(·).
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district intercept, and linear or non-linear effects for the continuous vari-
ables. Categorical and binary variables were modeled parametrically, giving
a total of 64 models to choose from.
To illustrate our findings in a simple example, consider the model with
height of the mother as the single predictor. Using maximum likelihood
estimation, the estimated effect is linear (Figure 3). This results in a tie for
the cAIC, while the mAIC clearly prefers the smaller linear model due to
the additional parameter count for the variance parameter. Using REML
estimation, the estimated effect is slightly non-linear. While the mAIC still
prefers the smaller, linear model, the cAIC as expected chooses the larger,
non-linear model, despite the estimated non-linearity being quite small.
For the overall comparison of all 64 models, let a tie in the cAIC be in-
dicative of a choice of the simpler model. Then, cAIC and mAIC for both
ML and REML agree on the overall best model including a random dis-
trict intercept, linear effects for age, height and body mass index of the
mother, and non-linear effects of child’s age and duration of breastfeeding
(Figure 4). As mAIC and simplified cAIC are biased in opposite directions,
agreement between the two indicates optimality of this final model.
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FIGURE 3. Estimated effect of height of the mother (in cm) on the Z-score mea-
suring chronic undernutrition of children in Zambia.
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6 Discussion

We investigated the behavior of mAIC and cAIC for selecting random ef-
fects in linear mixed models. This corresponds to interesting model choice
questions, including decision on non-linearity of effects, constancy of vary-
ing coefficients, or the necessity for a random intercept. We found the mAIC
to be biased towards simpler models without random effects. The bias is
dependent on the setting and the true value of the random effects variance.
For the cAIC, it is essential to correct for estimation uncertainty in the
unknown random effects covariance matrix. Ignoring the uncertainty, while
common and computationally attractive, leads to selection of the random
effect whenever it is not estimated to be exactly zero. This problem is in-
dependent of the sample size and does not vanish asymptotically. More
research is needed to obtain numerically feasible and robust versions of the
corrected cAIC, and to extend methodology to generalized linear mixed
models.

For a longer working paper on our results including proofs, please see
Greven & Kneib (2008).
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