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Abstract: We consider the problem of testing for zero variance components in
linear mixed models. Typical applications include testing for a random intercept
or testing for linearity of a smooth function. We propose two approximations to
the finite sample null distribution of the restricted likelihood ratio test statistic.
Our approach applies to a wider variety of mixed models than previous results,
including those with moderate numbers of clusters, unbalanced designs, or non-
parametric smoothing. Extensive simulations show that both proposed approxi-
mations outperform the 0.5χ2

0 : 0.5χ2
1 approximation and parametric bootstrap

currently used.
Our methods are motivated by and applied to the longitudinal epidemiological
study Airgene, with the aim of assessing non-linearity of dose-response-functions
between ambient air pollution concentrations and inflammation.
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Air pollution.

1 Introduction

Linear mixed models are widely used to model longitudinal or clustered
data and, more recently, to estimate smoothing parameters for penalized
splines using REML or ML. We focus on linear mixed models of the form

Y = Xβ + Z1b1 + . . . + ZSbS + ε, (1)

with random effects bs∼ N(0, σ2
sIKs) pairwise independent and indepen-

dent of ε∼ N(0, σ2
εIn), Ks columns in Zs, Iν the identity matrix of size

ν, and n the sample size.
We are interested in testing one of the variance components

H0,s : σ2
s = 0 versus HA,s : σ2

s > 0, (2)
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corresponding, for example, to testing for a zero random intercept or test-
ing linearity against a general alternative. This problem is non-standard
due to the parameter on the boundary of the parameter space. Stram
and Lee (1994), using results from Self and Liang (1987), showed that
the Likelihood Ratio Test (LRT) statistic for testing (2) has an asymp-
totic 0.5χ2

0 : 0.5χ2
1 null distribution if Y can be divided into independent

and identically distributed (i.i.d.) subvectors. However, for penalized spline
smoothing responses are not independent at least under the alternative, and
longitudinal studies often have unbalanced data or only moderate numbers
of subjects. Crainiceanu and Ruppert (2004) derived the finite sample and
asymptotic null distribution of the LRT and restricted LRT (RLRT) for
testing (2) in models with one variance component (S = 1), and showed
that it is generally different from 0.5χ2

0 : 0.5χ2
1. For S > 1, they recommend

a parametric bootstrap, which can be computationally very expensive. As
the LRT has been seen to have undesirable properties with a high probabil-
ity mass at zero, we develop two faster approximations to the finite sample
null distribution of the RLRT.

2 Two approximations to the RLRT null distribution

2.1 Fast finite sample approximation

Our first approximation is inspired by pseudo-likelihood estimation (Gong
and Samaniego, 1981), where nuisance parameters are replaced by consis-
tent estimators. Liang and Self (1996) showed that under certain regularity
conditions the asymptotic distribution of the pseudo LRT is the same as
that of the LRT if the nuisance parameters are known. For our problem,
we could view the bi, i �= s, as nuisance parameters. We assume that under
regularity conditions the prediction of

∑
i�=s

Zibi is good enough to allow the

distribution of the RLRT in model (1) to be closely approximated by the
RLRT in the reduced model

Ỹ = Xβ + Zsbs + ε, (3)

with Ỹ =Y − ∑
i�=s

Zibi assumed known. As model (3) has only one variance

component σ2
s , the exact null distribution of the RLRT for testing (2) is

known (Crainiceanu and Ruppert, 2004) to be

RLRTn
d= sup

λ≥0

{
(n − p) log

[
1 +

Nn(λ)
Dn(λ)

]
−

Ks∑
l=1

log(1 + λμl,n)

}
, (4)

where d= denotes equality in distribution, p is the number of columns in X ,

Nn(λ) =
Ks∑
l=1

λμl,n

1 + λμl,n
w2

l , Dn(λ) =
Ks∑
l=1

w2
l

1 + λμl,n
+

n−p∑
l=Ks+1

w2
l , (5)
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wl, l = 1, . . . , n − p, are independent N(0, 1), and μl,n, l = 1, . . . , Ks, are
the eigenvalues of the Ks × Ks matrix Z′

s(In − X(X′X)−1X′)Zs. This
distribution can be simulated from very efficiently, as the Ks eigenvalues
need to be computed only once, and speed depends only on Ks rather than
on the number of observations n.

2.2 Mixture approximation to the Bootstrap

If a parametric bootstrap is preferred but computationally intensive, we
propose the following parametric approximation to the RLRT distribution

RLRT
d≈ aUD, (6)

where U ∼ Bernoulli(1 − p), D ∼ χ2
1, and

d≈ denotes approximate equality
in distribution. The flexible family of distributions in (6) contains as a
particular case the i.i.d. case asymptotic 0.5χ2

0 : 0.5χ2
1 distribution with

a = 1 and p = 0.5, and is just as easy to use. p and a can be estimated
from a bootstrap sample, while (6) stabilizes estimation of tail quantiles
and thus reduces the necessary bootstrap sample size.
Maximum likelihood estimation of p would require the proportion of sim-
ulated RLRT values that are exactly zero, and is therefore very sensitive
to numerical imprecisions (encountered, for example, with proc MIXED in
SAS, and the lme function in R). We thus propose estimation of p and a
using the method of moments, after setting all negative values to zero.

Note that both our proposed approximations are asymptotically identical
to the 0.5χ2

0 : 0.5χ2
1 approximation when the i.i.d. assumption holds.

3 Simulation Study

We conducted an extensive simulation study, covering a range of important
situations with one or two variance components. An overview is given in
Table 1. We varied the number of subjects I = 6, 10 and observations
per subject J = 5, 25, 50, 100 for all settings, as well as the value for
the respective nuisance variance component σ2

1 = 0, 0.1, 1, 10, 100, while
all other parameters not restricted to zero under the null were fixed at
either 1 or −1. Covariates were sampled from standard normal distribu-
tions, with increasing correlation for the case of two smooth functions.
Smooth uni- or bivariate functions were modeled using low-rank thin plate
splines with smoothing parameters estimated by REML, and with testing
of the corresponding variance component translating to testing for linear-
ity f(x) = β0 + β1x in the univariate, and to testing for additivity and
linearity f(x1, x2) = β0 +β1x1 +β2x2 in the bivariate case. 10,000 samples
each were simulated from the RLRT null distribution and our two approx-
imations compared to a bootstrap and the 0.5χ2

0 : 0.5χ2
1 approximation.
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Tested Component Null Hypothesis Nuisance Component

1 Random Intercept Equality of Means -
2 Smooth Function Linearity -

3 Random Intercept Equality of Means Smooth Function
4 Smooth Function Linearity Random Intercept
5 Smooth Function Linearity Smooth Function
6 Random Slope Equality of Slopes Random Intercept
7 Bivariate Smooth Additivity and Linearity Random Intercept
8 Random Intercept Equality of Means Bivariate Smooth

TABLE 1. Settings for the simulation study.

The fast finite sample approximation produced empirical type I error rates
close to the nominal level, comparable to the exact distribution when S = 1.
The approximation was usually good even for n = 30; the necessary sample
size increased somewhat when random effects were correlated. The aUD
approximation reduced the necessary bootstrap sample size by between
10% and 90%, with the reduction more pronounced for smaller α levels or
p values. The 0.5χ2

0 : 0.5χ2
1 approximation was always very conservative.

4 Testing smooth dose-response-functions

The Airgene study was conducted in six European cities between May 03
and July 04. One of its aims is to assess association between inflamma-
tory responses and ambient air pollution concentrations in myocardial in-
farction survivors. 3 inflammatory blood markers (CRP, Fibrinogen, IL-6)
were measured every month repeatedly up to 8 times in 1,003 patients. Air
pollution and weather variables were measured concurrently in each city.
Patients were genotyped and additional information collected at baseline.
Analyses had to account for longitudinal data structure and potential non-
linearity of weather and trend variables, with smooth effects estimated in
the mixed model framework. As the shape of the air pollution dose-response
functions has important policy implications, one aim of the study was to
investigate the functional form of the air pollution effects on inflammation.
For illustration, we focus on the effect of PM10, particulate matter with di-
ameter less than 10 μm, on Fibrinogen in Barcelona. A total of 1074 valid
blood samples and PM10 exposures were available for 183 patients.
The model used for the PM10-Fibrinogen dose-response function is

FIBij = ui + f(PM10ij) +
L∑

l=2

βlxijl + εij , εij
iid∼ N(0, σ2

ε), (7)

where FIBij is the jth Fibrinogen value of the ith patient, ui
iid∼ N(0, σ2

u)
is a random patient intercept, and PM10 indicates the 5-day-average PM10
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FIGURE 1. Estimated smooth PM10-Fibrinogen dose-response function in
Barcelona.

exposure before blood withdrawal. f(.) is a smooth, unspecified, function
estimated using penalized cubic B-Splines and penalizing deviations from
linearity (Greven et al., 2006). Linear covariates xl are patient’s age, asthma
diagnosis, time trend, weekday and air temperature (cubic polynomial).
Figure 1 shows the estimated smooth PM10 effect on Fibrinogen in Barcelo-
na. An important scientific question is whether the dose-response function
is linear. This is equivalent to testing (2) in (7), where σ2

s is a variance com-
ponent controlling the smoothness of f(.). Note that the i.i.d. assumption
is violated and that the model includes two variance components.
The test statistic for testing linearity of f(·) against a general alternative
takes the value RLRT = 2.9. Test results for all four approximations are
given in Table 2. The fast finite sample approximation reduces computa-
tion time by 4 orders of magnitude, while results are similar to a bootstrap.
The aUD approximation gives results close to the bootstrap even for sample
sizes 100 times lower. The 0.5χ2

0 : 0.5χ2
1 approximation is clearly conserva-

tive. In all cases, results indicate a significant difference from linearity.

5 Summary

We have discussed testing for zero variance components in linear mixed
models. Possible applications include, but are not limited to, testing for
zero random intercepts or slopes and testing for linearity of a smooth func-
tion against a general alternative. For models with one variance compo-
nent, we recommend directly using the exact null distribution of the RLRT
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Approximation Samples Time p-value
Fast finite sample 100,000 ∼35sec 0.023

aUD 100 ∼4min 0.026
aUD 1,000 ∼40min 0.031
aUD 10,000 ∼8h 0.029

0.5χ2
0 : 0.5χ2

1 - - 0.044
Bootstrap 10,000 ∼8h 0.025

TABLE 2. Testing the PM10 effect on Fibrinogen in Barcelona for linearity. Com-
putation time was measured on a standard PC using Matlab (f.f.s.) / SAS.

statistic derived in Crainiceanu and Ruppert (2004), which can be simu-
lated efficiently. For models with more than one variance component, we
have proposed two approximations to the finite sample null distribution
of the RLRT. Extensive simulations showed superiority of both approxi-
mations over the 0.5χ2

0 : 0.5χ2
1 approximation and parametric bootstrap

currently used. Our results extend existing methodology to linear mixed
models with more than one variance component and lacking independence
assumption. We have illustrated the use in testing for linearity of dose-
response-functions for longitudinal data on air pollution health effects.
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Greven, S., Küchenhoff, H., and Peters, A. (2006). Additive mixed models with
P-Splines. Proceedings of the 21st International Workshop on Statistical
Modelling, 201-207. Eds.: Hinde J, Einbeck J and Newell J.

Liang, K.-Y. and Self, S.G. (1996). On the Asymptotic Behaviour of the Pseu-
dolikelihood Ratio Test Statistic. Journal of the Royal Statistical Society:
Series B, 58(4), 785-796.

Self, S.G. and Liang, K.-Y. (1987). Asymptotic Properties of Maximum Likeli-
hood Estimators and Likelihood Ratio Tests Under Nonstandard Condi-
tions. Journal of the American Statistical Association, 82(398), 605-610.

Stram, D.O. and Lee, J.-W. (1994). Variance Components Testing in the Longi-
tudinal Mixed Effects Model. Biometrics, 50(3), 1171-1177.


