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Sonja Greven1,2, Helmut Küchenhoff1 and Annette Peters2 for
the AIRGENE study group

1 LMU, Department of Statistics, Akademiestr. 1, D-80799 Munich, Germany
2 GSF National Research Center for Environment and Health, Institute of Epi-

demiology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany

Presenting author: Sonja Greven, sonja.greven@stat.uni-muenchen.de
Student Oral Presentation

1 Overview

We present an approach to additive mixed models using P-Splines where
the spline coefficients are estimated in the mixed model framework. We
have implemented this approach in a SAS macro which can be used in a
wide variety of contexts. We apply our methodology to an epidemiological
study assessing the health effects of ambient air pollution.

2 Motivating data set - the AIRGENE Study

Background: Epidemiological studies clearly link ambient air pollution,
especially particulate matter (PM), to morbidity and mortality due to
cardio-pulmonary diseases. This lead to new regulations being introduced
in the EU in 2005, limiting average PM10 (Ø< 10 μm) concentrations in
cities. However, research on causal pathways linking air pollution to out-
comes such as myocardial infarctions is still ongoing. Pro-inflammatory and
pro-thrombotic processes are thought to be involved. There might also be
genetic dispositions for susceptibility to air pollutants.
The study: The AIRGENE study is an EU-funded epidemiological study
conducted in the six European cities Athens, Augsburg, Barcelona, Helsinki,
Rome and Stockholm between May 03 and July 04. It aims at assessing
inflammatory responses in association with ambient air pollution concen-
trations in myocardial infarction (MI) survivors (see also Ruckerl et al.,
2005) and at defining susceptible subgroups of MI survivors based on geno-
typing.
Data structure: Three inflammatory blood markers (C-reactive protein,
Fibrinogen and Interleukin-6) were measured every month repeatedly up
to 8 times in over 1,000 MI survivors, resulting in about 6,000 samples
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per marker in total. Ten air pollution and several weather variables were
measured hourly throughout the study period. Patient characteristics were
collected at baseline, including the determination of 114 SNPs on 13 in-
flammatory pathway genes hypothesized to modify the pollutant effects.

3 Methods

To analyze the AIRGENE data, we have to account for the longitudinal
data structure and the potential non-linearity of weather and trend vari-
ables. We decided on a mixed model approach using a random patient
effect. Short half-times of the blood markers render an additional corre-
lation structure unnecessary. Trend and weather variables are potentially
included as additive terms modeled by P-Splines, where coefficients are esti-
mated in the mixed model framework. To assess the possible non-linearity
of pollutant effects, dose-response-functions are also modeled as smooth
functions in a second step.

The models for the AIRGENE data can be embedded into a more general
framework of additive mixed models, where the additive components are
modeled by P-Splines (penalized splines with a B-Spline basis, see Eilers
and Marx, 1996), and the spline coefficients are estimated in a mixed model
framework.
We use P-Splines rather than the truncated power basis usually used in
this context, as in Ruppert, Wand and Carroll, 2003, or Ngo and Wand,
2004. This not only results in better numerical properties, but also allows
us to independently choose the degree of the B-Splines and the order of
the penalization, contrary to them being linked in the truncated powers
approach. For the AIRGENE data we can thus use cubic B-Splines for
smooth curves with 2nd order difference penalties, penalizing deviations
from linearity as the natural default assumption.
We will use notation relating to our longitudinal data, but the extension
to the more general additive mixed model case is obvious. A typical model
for yij , the jth blood marker value of the ith patient, would be

yij = ui +
w∑

l=1

xijlβl +
t∑

k=1

fk(sijk) + εij with (1)

• u = (u1, . . . , un) ∼ N(0, σ2
uIn), the random person effects

• xij1, . . . , xijw values of the linear effect variables x1, . . . , xw for the ijth

observation

• ε = (ε11, . . . , ε1n1 , . . . , εn1, . . . , εnnn
) ∼ N(0, σ2

εIN ), the error terms
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• f1, . . . , ft smooth functions of continuous variables with

fk(.) =
K(k)∑
ν=1

γkνBd
kν(.), (2)

where the Bd
kν(.) are K(k) B-splines of degree d.

Omitting the ui for the moment, the penalized least squares problem for
model (1) can then be written as

min ‖y − Xβ −
t∑

k=1

Bkγk‖2 +
t∑

k=1

λkγ′
kDp

K(k)
′
Dp

K(k)γk with (3)

• Dp
h the pth order difference matrix of size (h − p) × h:

D0
h = Ih, D1

h =

⎡
⎢⎣

−1 1
. . . . . .

−1 1

⎤
⎥⎦ and Dp

h = D1
h−p+1D

p−1
h , p > 1.

• λk, k = 1, . . . , t, smoothing parameters

• y = (yij), X = (xijl), β = (βl), Bk = (bijν) = (Bd
kν(sijk)), γk = (γkν)

with ij ordered as in ε, l = 1, . . . , w, ν = 1, . . . , K(k), and k = 1, . . . , t.

We can now split the γs into an unpenalized and a penalized part (see
Fahrmeir, Kneib and Lang, 2004, for this idea for Bayesian P-Splines)

γk = Ψp,unp
k γp,unp

k + Ψp,pen
k γp,pen

k with (4)

• Ψp,unp
k = Ep

k = (e0
k| . . . |ep−1

k ) with el
k = (1l, . . . , K(k)l)′, the columns of

Ep
k spanning the kernel of Dp

K(k).

• Ψp,pen
k = Dp

K(k)

′(Dp
K(k)D

p
K(k)

′)−1.

The penalty terms then reduce nicely and and our problem can be rewritten
as

min ‖y − X̃β̃ − Z̃γ̃‖2 +
t∑

k=1

λkγp,pen′
k IK(k)γ

p,pen
k with (5)

• X̃ = (X|B1Ψ
p,unp
1 | . . . |BsΨp,unp

s ), β̃ = (β′|γp,unp′
1 | . . . |γp,unp′

s )′,

• Z̃ = (B1Ψ
p,pen
1 | . . . |BsΨp,pen

s ), γ̃ = (γp,pen′
1 | . . . |γp,pen′

s )′.

Divided by σ2
ε , (5) is equivalent to BLUP-estimation of β̃ and γ̃ in the

mixed model
y = X̃β̃ + Z̃γ̃ + ε (6)

with fixed effects β̃ and random effects γ̃ with a block diagonal covariance
matrix with fixed variances σ2

γk
= σ2

ε/λk. We can now easily re-include the
other random effects in the model, appending γ̃ and Z̃ accordingly.
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We use the approach of Ruppert, Wand and Carroll, 2003, to estimate
our model (1) as the mixed model (6), including the estimation of the
smoothing parameters λk as variance ratios σ2

ε/σ2
γk

.
Centered plots for fk can be constructed setting up the design matrices
for a grid of sk, the mean values of the other continuous variables and
the reference category of the categorical variables. After reparametrizing,
resulting in the matrices X̃fk

and Z̃fk
, we can estimate the vector of BLUPs

for the grid as
f̂k = X̃fk

β̂ + Z̃fk
γ̂. (7)

where β̂ and γ̂ are the estimated BLUPs for β̃ and γ̃.
Variability bands for the linear and smooth components can be computed
using

C := Cov
([

β̂
γ̂ − γ̃

])
= σ2

ε

[
X̃ ′X̃ X̃ ′Z̃
Z̃ ′X̃ Z̃ ′Z̃ + F

]−1

(8)

where F = blockdiag( σ2
ε

σ2
u
In,

σ2
ε

σ2
γ1

IK(1), . . . ,
σ2

ε

σ2
γt

IK(t)) (see Ruppert, Wand

and Carroll, 2003, for a derivation). An approximate 100(1−α)% confidence
interval for the centered fk at a specific point tk can then for large numbers
of observations be calculated as

f̂k(tk) ± z1−α
2
ŝtd

(
f̂k(tk) − fk(tk)

)
= f̂k(tk) ± z1−α

2

√
ltk

Ĉ l′tk
(9)

where ltk
is the corresponding row in [X̃fk

|Z̃fk
] and Ĉ is constructed using

the estimated variances. Partial residuals can be added to the plots as an
additional diagnostic tool by summing the residuals and the componentwise
fitted values.

4 Implementation

To our knowledge, this approach is not implemented in standard software
as yet, although the implementation is described in Ngo and Wand, 2004,
using a truncated lines basis. In our SAS macro, random intercepts, smooth,
linear and categorical components can be named and the degree of the B-
Splines, the order of the differences for the penalization and the number
of knots can be chosen. Plots of the smooth components with variability
bands and partial residuals as well as tests of the linear and categorical co-
variates as implemented in SAS proc mixed are available. The macro could
potentially be used in a wide variety of contexts and can be obtained from
the presenting author. The approach showed good results in the simulations
we conducted.
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TABLE 1. Effect estimates for log(IL-6) [pg/ml] in Stockholm.

Variable Estimate Std p-Value
Intercept 0.1904 0.4304 0.6588
log(BNP) [pg/ml] 0.1336 0.0351 0.0001
BMI [kg/m2] 0.0241 0.0085 0.0047
HDL [mg/dl] -0.0064 0.0027 0.0188
Temperature [◦C] -0.0066 0.0051 0.1971
COPD/ no -0.3045 0.1516
chronic some indication -0.0996 0.1638
bronchitis yes 0 0.0177

Reinfarction no -0.1557 0.1063
yes 0 0.1434

5 Results

We decided on seperate models for each blood marker and city, as climate
and study period differ considerably. We built confounder models first with-
out air pollutants to allow for meaningful tests of pollutant effects, and then
added one pollutant at a time to avoid collinearity, testing for a linear effect.
Results were pooled subsequently using meta-analysis methodology.
The air pollution results of the AIRGENE study will be presented else-
where. As an example for the analyses conducted, we here present the se-
lected confounder model for one of the blood markers and one of the cities
- for the log-transformed Interleukin-6 in Stockholm. This model was built
in a forward step-wise procedure using the AIC to compare models. We
selected chronic obstructive pulmonary disease / chronic bronchitis and re-
infarction indicators (categorical), log(BNP) (a heart failure blood marker),
body mass index (BMI), high density cholesterol (HDL) and average ap-
parent temperature in the last 48 hours (linear), and time trend (smooth)
as potential confounders. Results for the effect estimates of the linear and
categorical predictors are shown in table 1. Higher values of BMI and BNP,
lower values of HDL (the ”good” cholesterol) and temperature as well as
having COPD / chronic bronchitis or a reinfarction correspond to higher
IL-6 values. Time trend was measured in days since start of the study,
corresponding in Stockholm to September 03, 2003, to June 24, 2004. Fig-
ure 1 shows the estimated smooth time trend with 95% variability bands
and partial residuals, estimated using cubic B-Splines with second order
difference penalties.
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Model: Confounder Model Stockholm for log(IL−6)
Outcome: logil6, Linear Predictors: logbnp bmi hdl m24at_lag01
Smooth Predictors: trend, Categorical Predictors: copd mianzcat

Estimated function Lower pointwise 95% confidence limit
Upper pointwise 95% confidence limit Partial residuals
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FIGURE 1. Estimated smooth time trend of log(IL-6) in Stockholm.

6 Summary and Outlook

We have shown that additive mixed models with penalized splines esti-
mated in the mixed model framework are extendable to P-splines using an
additional reparametrization. This allows an independent choice of the B-
Spline degree and the order of the penalty. We implemented this approach
in a SAS macro suitable for many applications and used it to analyze the
longitudinal AIRGENE study.
We will next focus on testing of smooth components and pooling of smooth
components across cities, which is motivated by estimation and testing of
dose-response-functions for environmental factors in AIRGENE. A boot-
strap test analogously to the truncated lines case in Coull, Schwartz, and
Wand, 2001, will be implemented first. Afterwards we plan an extension of
the exact likelihood ratio tests for penalized splines developed by Craini-
ceanu et al., 2005, using the truncated power basis, and a comparison of
the two tests.
An extension of our approach to generalized models is also in progress,
to allow models for additional diary data in AIRGENE where presence or
absence of symptoms as well as health status in five categories was noted
down daily. All extensions will be implemented and made available in SAS.
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