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1 Introduction

In their article “Smoothing parameter and model selection for general smooth models”, Wood, Pya and
Säfken make a significant and impressive contribution to the development of general smooth models
and specifically to estimation, inference and model selection for these models. Given the popularity of
the R package mgcv (Wood, 2011) to date, the newly developed methods and their implementation in
mgcv are likely to shape the routine use of smooth models - for more general model classes than were
previously available - in the future.

The developed framework is very flexible and can be used even beyond the models covered in the
paper. For example, by shifting the functional structure to an appropriate smooth additive predictor
(Scheipl et al., 2015), we have used methods for smooth models (Wood, 2011) to develop flexible
functional additive mixed models for functional data. The new extensions in the discussed article then
allowed us to extend this approach to “generalized” functional data (Scheipl et al., 2016; Greven and
Scheipl, 2016), where the observations can be thought of as coming from some non-Gaussian process
with underlying smoothness assumption and e.g. negative binomial, t- or Beta marginal distributions.
It is a large advantage for researchers and users of flexible regression models that the mgcv package
provides such a highly performant, innovative and well-documented implementation of state-of-the-art
methodology.

While many aspects in the paper are worthy of attention, we focus on smoothing parameter uncer-
tainty and applaud the authors’ effort to develop methods taking it into account for statistical inference.
As covariances and confidence intervals for the regression coefficients are motivated from a Bayesian
viewpoint, we initially focus on the implicit prior assumptions and their effects on the posteriors (Section
2) before coming back to the effects of smoothing parameter uncertainty on coefficient uncertainty in
Section 3.

To facilitate discussion and intuition, we use a running example of a nonparametric regression model

yi = m(xi) + εi, εi i.i.d. N (0, σ2), i = 1, . . . , n. (1)

In simulations, we take xi to be equidistant in [0, 1] and the true m(xi) = d exp(2xi) for some d.
Let m(·) be parameterized using a penalized spline basis expansion such that the coefficient vector β
projected into the penalty null-space corresponds to a straight line for m(·), while the projection into the
span of the penalty matrix captures deviations from linearity. This example has only one log-smoothing
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parameter ρ1 ≡ ρ controlling smoothness of m(·), with ρ → ∞ leading to a linear estimate for m(·)
and ρ→ −∞ yielding an unpenalized least squares fit.

2 Prior assumptions and posteriors

The authors motivate their approach for smoothing parameter uncertainty and model selection using a
Bayesian viewpoint. We thus think it informative to take a look at the implicit prior assumptions of the
approach and their effects on the posteriors.

Results in the paper are with respect to ρ, where each entry is a log-smoothing parameter ρj =
log(λj). We can view the penalized log-likelihood in equation (1) of the paper as the joint or the
PQL-approximate log-likelihood (Ruppert et al., 2003, pp. 204-216) of a mixed model with (usually

improper) normal prior density f(β|ρ) ∝ exp(−1
2
β>Sλβ) and β̂ (as maximizer of (1)) as posterior mode

maximizing f(β|y,ρ) ∝ f(y|β)f(β|ρ) for a given ρ. If there is only one penalty associated with each
subvector βj of β, i.e. different blocks are non-zero for different Sj, λj in Sλ =

∑
j λjS

j corresponds to

the inverse of a variance parameter τ 2j associated with the random effect βj and controlling deviations

of gj(·) from the null space of the penalty. Estimated model coefficients β̂ converge to estimates in the
null space of the penalty matrix Sj if ρj →∞ and thus λj →∞ or τ 2j → 0.

Note that in a parameterization with respect to τ 2j , a function gj(·) can be estimated to lie exactly
in the null space of the penalty (e.g. an exactly linear function in our running example) when τ̂ 2j = 0
is on the boundary of the parameter space [0,∞) for τ 2j . This case corresponds to ρ̂j → ∞ in the

ρj ∈ (0,∞) parameterization, which can never be exactly estimated, although the differences in β̂ to a
very large ρ̂j (very small τ̂ 2j ) are negligible. Considering the alternative τ 2j parameterization also makes
explicit that there is a boundary issue for τ 2j = 0 or ρj →∞ that is well-known to cause non-standard
asymptotic behavior e.g. when testing whether gj(·) lies in the null-space of the penalty (Crainiceanu
and Ruppert, 2004; Greven and Crainiceanu, 2013).

For estimation, the Laplace approximation (LAML) of the log marginal likelihood criterion (2)

log

∫
f(y|β)f(β|ρ)dβ = log f(y|ρ)

is maximized with respect to ρ. This can be seen as approximately maximizing the posterior density

f(ρ|y) ∝ f(y|ρ)f(ρ) ∝ f(y|ρ)

under independent improper uniform priors U(−∞,∞) for each ρj, f(ρ) ∝ 1. This prior corresponds
to an improper prior on (0,∞) for either λj or τ 2j with density proportional to 1/λj respectively 1/τ 2j
and can lead to an improper posterior f(ρ|y) (Gelman, 2006). Note that the posterior under proper
U [aj, bj] priors has the same mode ρ̂ as for improper U(−∞,∞) priors as long as ρ̂j ∈ [aj, bj] for all
j. However, if the marginal likelihood is monotonically increasing in ρj, U [aj, bj] priors yield bj as the
posterior mode for ρj and not infinity.
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Since the posterior distribution of ρ with U [aj, bj] priors, aj, bj ∈ [−∞,∞], has density

f(ρ|y) ∝ f(y|ρ)I(aj ≤ ρj ≤ bj ∀ j) = exp(Vr(ρ))I(aj ≤ ρj ≤ bj ∀ j), (2)

where the marginal likelihood exp(Vr(ρ)) is defined as a function of ρ analogous to equation (2) of the
article, it is informative to look at the shape of the Laplace approximation exp(V(ρ)). Figure 1 shows
exp(V(ρ)) as a function of ρ for four simulations from model (1) with n = 200, d = 0.1 and σ = 0.5,
estimating a smooth function for m(·) using the gam defaults in mgcv with method = "REML". From
left to right, estimates ρ̂ are increasing. In the rightmost panel the LAML is maximized for ρ→∞. For
comparison, the normal posterior densities for ρ as given by (6) in the paper, using ρ̂ and V ρ as returned
by mgcv as mean and variance, are scaled to have the same maximum values and are overlaid in red.
We can see that in all cases 1) the non-diminishing mass for ρ → ∞ leads to an improper posterior
that cannot be normalized, even though this is hardly visible in the leftmost panel with smallest ρ̂. In
particular, the LAML stays practically constant for increasing ρ after a certain point that roughly results
in a linear fit for m(·). 2) The normal approximation of equation (6) is reasonable locally near ρ̂ in the
three leftmost panels, but does not hold for ρ→∞ or for the strongly regularized function estimate in
the rightmost panel.
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Figure 1: The LAML criterion exp(V(ρ)) (in black), as a function of ρ for four settings with increasing
ρ̂ (vertical lines, as returned by mgcv). In the right panel, the LAML is maximized for ρ → ∞. Red
lines indicate the normal posterior density for ρ as given by (6) in the paper, scaled to have the same
maximum value and using ρ̂ and V ρ as returned by mgcv as mean and variance, respectively.

For the conditional posterior of β|y,ρ, we know that it is asymptotically Gaussian N (β̂ρ,V β(ρ))
for each given ρ, cf. equation (5) of the discussed article, where we have made the dependence of V β

on ρ explicit in our notation. The asymptotic marginal posterior of β|y thus is generated similarly to a
scale mixture of multivariate normal distributions with density

f(β|y) =
∫
f(β|y,ρ)f(ρ|y)dρ, (3)

where f(β|y,ρ) is the N (β̂ρ,V β(ρ)) density and the approximate shape of f(ρ|y) is shown in Figure 1.
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To look at the marginal posterior of β, we use the jagam function (Wood, 2016) in mgcv, which
allows to extract model specifications of a generalized additive model (GAM) and to fit the model using
full Bayesian inference via MCMC in JAGS (Plummer, 2016). We simulate again from running example
(1) with n = 100 and σ = 1. The prior for the log-smoothing parameter ρ is set to ρ ∼ U [−12, 12],
since only proper priors are possible here, but estimates ρ̂ are always smaller than 12. Figure 2 shows
a strongly nonlinear fit for d = 2 (top), and an almost linear fit for d = 0.1 (bottom). Note that
the two estimates (left panels) from mgcv and jagam are not identical, as mgcv uses the posterior
mode of f(β|y,ρ) at the posterior mode ρ̂ of f(ρ|y), while jagam uses the posterior mean of f(β|y).
Confidence/credible bands and the posterior densities (right panels) are however based on the marginal
posterior f(β|y) for both, with differences due to the normal approximation of the marginal posterior in
mgcv. We can see that the posterior f(β|y) is close to normal in the strongly nonlinear setting, where
ρ̂ is relatively small. For the almost linear estimate, however, where ρ̂ is large, most coefficients show
a spiky posterior with most mass close to zero and heavier tails than a Gaussian, while one coefficient
exhibits a bimodal distribution. Here, the normal approximation is not very close and the resulting
confidence band (bottom left) of mgcv is noticeably narrower than the credible band from jagam.

3 Smoothing parameter uncertainty

Consider now the posterior covariance of β, which is used for confidence band construction and in the
conditional AIC. The usual uncorrected covariance V β = V β(ρ) is based on the conditional posterior
f(β|y,ρ) with ρ̂ plugged in. The authors propose a corrected covariance V ′

β to account for smoothing
parameter uncertainty, based on approximating the marginal posterior f(β|y) using a linear Taylor
expansion.

Equation (6) of the paper postulates an asymptotic posterior distribution ρ|y ∼ N(ρ̂,V ρ) in the
interior of the parameter space, where V ρ is the inverse of the Hessian of the negative log marginal
likelihood −Vr with respect to ρ. The boundary case corresponds to ρ̂j → ∞, with ρ̂j values treated
as ’working infinity’ during estimation when ∂V/∂ρj ≈ ∂2V/∂ρ2j ≈ 0. In this case, the authors propose
to substitute a Moore-Penrose pseudoinverse of the Hessian. Consequences are most easily discussed
for the case of a scalar ρ. When ρ̂ → ∞, the Hessian of the negative log marginal likelihood is
−∂2Vr/∂ρ2|ρ=ρ̂ ≈ −∂2V/∂ρ2|ρ=ρ̂ → 0. The Moore-Penrose pseudoinverse of 0 is again 0, i.e. V ρ → 0.
Thus, the posterior for ρ collapses to a point mass at ρ̂ ≈ ∞ (corresponding to a point mass at
τ 2 ≈ 0). In this case, J and ∂

∂ρ
Rρ also converge to 0, formula (7) gives V ′

β → V β and the corrected
and uncorrected covariances coincide. This is also practically confirmed in simulations for our running
example: When the estimated effective degrees of freedom approach 2, the differences in the two
estimated covariance matrices approach zero.

Thus, smoothing parameter uncertainty is not accounted for near the boundary of the parameter
space, where coverage is most of an issue (Marra and Wood, 2012). For very large smoothing parameters,
confidence bands are effectively based on the submodel defined by the penalty nullspace. For example,
in our running example, if m(·) is estimated to be linear, confidence bands are computed based on the
linear submodel, ignoring the possibility of truly nonlinear functions. Confidence bands are too narrow
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Figure 2: The marginal posterior densities of β|y from jagam, separately for each component of β (nine
small panels, in black), with normal distributions fitted to the posterior sample overlaid in dashed black,
and the Gaussian approximation based on the smoothing parameter uncertainty corrected covariance
V ′

β from mgcv in red for the estimate shown in the large panel (Bayesian estimate and credible intervals
in black, estimate and confidence interval from mgcv in red, true function in grey, data as dots). Shown
are two simulations from running example (1) with strong nonlinearity d = 2 (top) and small nonlinearity
d = 0.1 (bottom). Vertical axis cropped in some panels for clarity.
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and linear in this case. This leads to undercoverage for functions m(·) that are not linear, but close
enough that there is a relevant probability of estimating a linear m̂(·), cf. Figure 3. For strongly nonlinear
functions, linear estimates rarely occur and do not noticeably change coverage. For truly linear functions,
computing confidence bands based on a linear submodel also does not lead to undercoverage. Thus,
while coverage is not affected in most cases, for functions that are only slightly nonlinear relative to
the noise level, there is a noticeable dip in coverage (”phase transition” between nonlinear and linear
models).

Since the linear Taylor approximation does not work well on the boundary of the parameter space
for ρ̂j →∞, we sketch two possible alternatives. In order to work with a normal approximation for the
marginal posterior of β that incorporates uncertainty in ρ, we can use the law of total covariance

Cov(β|y) = Eρ|y[Cov(β|y,ρ)]+Covρ|y[E(β|y,ρ)] = Eρ|y[V β(ρ)]+Eρ|y[β̂ρβ̂
>
ρ ]−Eρ|y[β̂ρ] Eρ|y[β̂ρ]

>,

where expectations are with respect to the posterior distribution f(ρ|y) given in (2).
Alternatively, abandoning the normality assumption which might be questionable near the boundary,

see Figure 2, we can directly use (3) to write f(β|y) as a continuous mixture of N (β̂ρ,V β(ρ)) densities.
As β is multi-dimensional and we are usually interested in linear combinations of β, it is easier to work
with f(x>β|y) =

∫
f(x>β|y,ρ)f(ρ|y)dρ for some relevant vector x, which is a one-dimensional scale

mixture of N (x>β̂ρ,x
>V β(ρ)x) densities with mixing distribution given in (2).

To compute pointwise level (1− α) confidence bands for either approach, we first define a grid ρr,
r = 1, . . . , R, of values covering the prior domain, e.g. for a one-dimensional ρ a grid covering the
interval [a, b]. We then compute weights w(ρr) = exp(V(ρr))/

∑R
r=1 exp(V(ρr)) to use in numerical

integration with respect to the posterior f(ρ|y). This requires R refits of the model with ρ fixed at ρr,
r = 1, . . . , R, to obtain exp(V(ρr)) as the LAML for this model fit. For the first approach, we can then
approximate the total covariance as

Cov(β|y) ≈
R∑
r=1

w(ρr)
[
V β(ρr) + β̂ρr β̂

>
ρr

]
−

[
R∑
r=1

w(ρr)β̂ρr

][
R∑
r=1

w(ρr)β̂ρr

]>

,

where β̂ρr and V β(ρr) are obtained from the model output as the estimate and uncorrected covariance
when refitting the model with ρ fixed at ρr. For the second approach, we can approximate f(x>β|y)
by a discrete mixture of N (x>β̂ρr ,x

>V β(ρr)x) densities, with mixture weights again given by the
w(ρr). The α/2 and (1−α/2) quantiles for this mixture can then be obtained e.g. using the R package
nor1mix (Mächler, 2016).

Note that both approaches use the posterior density f(ρ|y), which is only proper if finite prior limits
[aj, bj] are used. We have seen in Section 2 that these prior limits, if chosen sufficiently large, do not
have a strong influence on the model fit: If there is a maximum of the LAML within these bounds, it
is not affected by them, and if the LAML is monotonically increasing for ρj, the estimate β̂ is hardly
affected by further increasing ρj once it approximately lies in the null space of the penalty. When
using the posterior, however, these chosen boundaries do make a difference. Increasing bj puts more
prior weight on functions gj(·) close to the penalty null space, while decreasing bj puts more weight
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on functions deviating from the null space, e.g. on linear and nonlinear m(·) in our running example,
respectively. Thus, the two proposed alternatives also depend on the chosen prior limits.

We compared the different methods in a small simulation study for our running example with
n ∈ {50, 200}, σ ∈ {0.2, 0.5} and d ∈ {0, 0.1, 0.5, 1, 2} and worked with the prior limits a = −10
and b ∈ {4, 6, 8, 10}. (Results were not found to be sensitive to the lower limit here, as exp(V(ρ))
quickly decreases towards zero for small ρ values.) For the grid ρr we used ρ̂ + ln(10)k with k =
(−10,−9.9, . . . , 9.9, 10), i.e. an equidistant grid centered on ρ̂, truncated to [a, b].

Figure 3 shows results for average coverage across [0, 1] for 12000 replications for (n, σ) = (50, 0.2)
and (200, 0.5). There is a clear pattern of undercoverage for the uncorrected covariance V β for d = 0.1,
which is only partly corrected by using the corrected covariance V ′

β. For these two settings, d = 0.1 is
only slightly nonlinear compared to the noise level, resulting in a high percentage (29% respectively 41%)
of (near-)linear estimates with estimated degrees of freedom below 2.1. For d = 0, computing confidence
bands in the linear subspace leads to nominal or over-coverage, as does the normal approximation for
large d values. Using either the total covariance or the mixture approximation to f(β|y) gives very similar
coverage to the corrected covariance independent of b in the case of large d values, where estimates
are almost never linear and the normal approximation works well. For small d = 0.1, undercoverage is
improved compared to the corrected covariance, at the cost of some overcoverage for d = 0 (on the order
of the overcoverage all methods show for larger d values). Coverage is dependent on upper limit b of the
uniform prior for ρ, with smaller b placing more weight on nonlinear functions and thus leading to higher
coverage values. We interpret the undercoverage we observe for some large b, i.e., poorly calibrated
credible/confidence intervals for m̂(x), as a result of prior-data-conflict in these settings: large values of
b put an inordinate amount of prior weight on (approximately) linear functions, while the observations
come from a non-linear data generating process. For (n, σ) = (200, 0.2), near-linear estimates occur in
only 2% of simulations for d = 0.1 due to the higher information content of the data, leading to no
undercoverage using V ′

β and no advantages of the alternative methods. The dip in coverage for d = 0.1
is also smaller for (n, σ) = (50, 0.5), possibly due to the wide confidence bands in this setting with low
signal-to-noise ratio. Based on our limited four simulations, the mixture approximation with a low b
value seems to give coverage closest to constant across different values of d. Computing time for the
confidence intervals based on the mixture approximation were 2.5 to 3.5 seconds on a laptop computer
for n = 200 depending on b and without grid optimization or parallelization.

Figure 4 illustrates the corrected covariance and mixture approximation confidence intervals for our
running example. The left panel shows the linear estimate for m(·) and the pointwise confidence band
based on the corrected covariance in green. Confidence bands based on the mixture approximation with
a = −10 and b = 10 or b = 4 are shown in dark and light blue, respectively. It is clear that these
acknowledge the possibility of the true function being nonlinear and are wider in particular in the middle
and towards the ends of the [0, 1] interval. This leads to increased coverage of the truly nonlinear
function. The right panel shows the mixture approximation to the posterior of m(xi) for an example xi
in the middle of the interval. Uncertainty in ρ here leads to mixture components (for smaller ρ values)
with smaller mean and larger variance. This results in a skewed posterior with long lower tail and thus
in a smaller lower bound of the confidence/credible interval. It is also clear from the different locations
of the maxima that there is a difference between the maximum of the marginal posterior density f(β|y)
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Figure 3: Average coverage across [0, 1] for nominal level (1 − α) = 0.95 in running example (1) with
(n, σ) = (50, 0.2) (left) and (200, 0.5) (right). Coverages based on V β and V ′

β (circles) are denoted
by uncorrected and corrected, respectively. The prior supports for the total covariance (triangles) and
mixture approximation (crosses) methods are given in the legend.

(light blue) and the maximum of the conditional posterior density f(β|y, ρ̂) (green). Thus, in addition
to not being symmetrical, the interval based on the mixture approximation is also not centered on the
same value as that based on the corrected covariance.

4 Summary

The proposal by Wood, Pya and Säfken is an important step in the direction of accounting for smoothing
parameter uncertainty in inference for β. While it works well in most settings, for the ’phase transition’
between functions in the null space of the penalty and those far from the null space it does not lead to
well calibrated inference. Although the problem does not seem to be extremely large, we did see some
undercoverage in confidence bands due to the neglect of smoothing parameter uncertainty when the
function is effectively estimated to lie in the null space of the penalty (ρ̂j →∞ case).

We have discussed two alternative approaches to the problem, which seem to improve undercoverage
occurring in some of the cases we looked at. To more fully develop either approach would require
a more efficient way to choose a suitable grid with the smallest possible number of grid points and
a much wider simulation study including models with more than one smoothing parameter and other
response distributions. Preliminary results for a simple logistic GAM indicate that the two discussed
alternatives seem to be transferable in principle. We also saw that results remain sensitive to the chosen
prior limits of the uniform priors for the log-smoothing parameters ρ. The best combination of the

8



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0
1.

5

x

y

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
10

m(x)

po
st

er
io

r 
de

ns
ity

Figure 4: Left: Data (circles) simulated from the running example with n = 200, d = 0.1 and σ = 0.2,
true function m(·) (red), estimate and pointwise confidence band based on the corrected covariance
(green) and confidence bands based on the mixture approximation for a = −10 and b = 10 (dark
blue) or b = 4 (light blue). Right: For the x marked by a vertical line on the left, posterior density as
given by the normal approximation with corrected covariance (green) and the approximation by a normal
mixture distribution with b = 4 (light blue). Dashed grey lines show aggregated mixture components
with average means and standard deviations as well as total weights within each fifth of the grid for ρ.
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discussed alternatives and the Wood, Pya and Säfken approach might be to only compute the mixture
approximation when the estimate is close to the penalty null-space, as the corrected covariance seems
to work well in all other cases. We think it remains worthwhile to think about alternative approaches
for smoothing parameter uncertainty near the boundary as well as the relationship to model selection
via the newly proposed conditional AIC, for which the corrected covariance is also used.
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